2,020 research outputs found

    Method for remotely sensing turbulence of planetary atmospheres

    Get PDF
    Based on variances of log-amplitude and phase fluctuations of radio occultation data received from orbital and fly-by missions, structure constant for Venusian planetary atmosphere has been estimated with high-confidence factor. Analysis indicates that effects of inhomogeneity, finite size, and superrefractivity of atmospheric turbulence cannot be ignored

    Contribution of Type Ia and Type II Supernovae for Intra-Cluster Medium Enrichment

    Full text link
    The origin of the chemical composition of the intracluster medium (ICM) is discussed in this paper. In particular, the contribution from Type Ia supernovae (SNe Ia) to the ICM enrichment is shown to exist by adopting the fitting formulas which have been used in the analysis of the solar system abundances. Our analysis means that we can use the frequency of SNe Ia relative to SNe II as the better measure than MFe,SNIa/MFe,totalM_{Fe, SN Ia}/M_{Fe, total} for estimating the contribution of SNe Ia. Moreover, the chemical compositions of ICMs are shown to be similar to that of the solar system abundances. We can also reproduce the sulfur/iron abundance ratio within a factor of 2, which means that the abundance problem of sulfur needs not to be emphasized too strongly. We need more precise observations to conclude whether ICMs really suffer the shortage problem of sulfur or not.Comment: 20 pages, LaTeX text and 15 postscript figures. Accepted for publication in Astrophysical Journa

    Dyadic Green's Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene

    Full text link
    An exact solution is obtained for the electromagnetic field due to an electric current in the presence of a surface conductivity model of graphene. The graphene is represented by an infinitesimally-thin, local and isotropic two-sided conductivity surface. The field is obtained in terms of dyadic Green's functions represented as Sommerfeld integrals. The solution of plane-wave reflection and transmission is presented, and surface wave propagation along graphene is studied via the poles of the Sommerfeld integrals. For isolated graphene characterized by complex surface conductivity, a proper transverse-electric (TE) surface wave exists if and only if the imaginary part of conductivity is positive (associated with interband conductivity), and a proper transverse-magnetic (TM) surface wave exists when the imaginary part of conductivity is negative (associated with intraband conductivity). By tuning the chemical potential at infrared frequencies, the sign of the imaginary part of conductivity can be varied, allowing for some control over surface wave properties.Comment: 9 figure

    Scattering of Pruppacher-Pitter raindrops at 30 GHz

    Get PDF
    Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated

    Control of Light Diffusion in a Disordered Photonic Waveguide

    Get PDF
    We control the diffusion of light in a disordered photonic waveguide by modulating the waveguide geometry. In a single waveguide of varying cross-section, the diffusion coefficient changes spatially in two dimensions due to localization effects. The intensity distribution inside the waveguide agrees to the prediction of the self-consistent theory of localization. Our work shows that wave diffusion can be efficiently manipulated without modifying the structural disorder.Comment: 4 Figure

    Swelling of acetylated wood in organic liquids

    Full text link
    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society

    Polarization Sensitive Optical Coherence Tomography for Blood Glucose Monitoring in Human Subjects

    Full text link
    A device based on Polarization sensitive optical coherence tomography is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the degree of circular polarization obtainable from the PS-OCT.Comment: 12 pages, 5 figure

    Reflective Ghost Imaging through Turbulence

    Full text link
    Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop, within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns, and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both classical and nonclassical optical sources, as well as a computational ghost imager.Comment: 13 pages, 3 figure

    Weak localization in multiterminal networks of diffusive wires

    Full text link
    We study the quantum transport through networks of diffusive wires connected to reservoirs in the Landauer-B\"uttiker formalism. The elements of the conductance matrix are computed by the diagrammatic method. We recover the combination of classical resistances and obtain the weak localization corrections. For arbitrary networks, we show how the cooperon must be properly weighted over the different wires. Its nonlocality is clearly analyzed. We predict a new geometrical effect that may change the sign of the weak localization correction in multiterminal geometries.Comment: 4 pages, LaTeX, 4 figures, 8 eps file

    Effect of superradiance on transport of diffusing photons in cold atomic gases

    Full text link
    We show that in atomic gases cooperative effects like superradiance and subradiance lead to a potential between two atoms that decays like 1/r1/r. In the case of superradiance, this potential is attractive for close enough atoms and can be interpreted as a coherent mesoscopic effect. The contribution of superradiant pairs to multiple scattering properties of a dilute gas, such as photon elastic mean free path and group velocity, is significantly different from that of independent atoms. We discuss the conditions under which these effects may be observed and compare our results to recent experiments on photon transport in cold atomic gases.Comment: 4 pages and 1 figur
    • …
    corecore